Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

Identifieur interne : 000247 ( Main/Exploration ); précédent : 000246; suivant : 000248

Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

Auteurs : Sambuddha Sen [États-Unis] ; Claudia Bonfio [Italie] ; Sheref S. Mansy [Italie] ; J A Cowan [États-Unis]

Source :

RBID : pubmed:29264659

Descripteurs français

English descriptors

Abstract

Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

DOI: 10.1007/s00775-017-1525-5
PubMed: 29264659


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bonfio, Claudia" sort="Bonfio, Claudia" uniqKey="Bonfio C" first="Claudia" last="Bonfio">Claudia Bonfio</name>
<affiliation wicri:level="1">
<nlm:affiliation>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo</wicri:regionArea>
<wicri:noRegion>Povo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mansy, Sheref S" sort="Mansy, Sheref S" uniqKey="Mansy S" first="Sheref S" last="Mansy">Sheref S. Mansy</name>
<affiliation wicri:level="1">
<nlm:affiliation>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo</wicri:regionArea>
<wicri:noRegion>Povo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. cowan@chemistry.ohio-state.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29264659</idno>
<idno type="pmid">29264659</idno>
<idno type="doi">10.1007/s00775-017-1525-5</idno>
<idno type="wicri:Area/Main/Corpus">000276</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000276</idno>
<idno type="wicri:Area/Main/Curation">000276</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000276</idno>
<idno type="wicri:Area/Main/Exploration">000276</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bonfio, Claudia" sort="Bonfio, Claudia" uniqKey="Bonfio C" first="Claudia" last="Bonfio">Claudia Bonfio</name>
<affiliation wicri:level="1">
<nlm:affiliation>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo</wicri:regionArea>
<wicri:noRegion>Povo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mansy, Sheref S" sort="Mansy, Sheref S" uniqKey="Mansy S" first="Sheref S" last="Mansy">Sheref S. Mansy</name>
<affiliation wicri:level="1">
<nlm:affiliation>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo</wicri:regionArea>
<wicri:noRegion>Povo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. cowan@chemistry.ohio-state.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</title>
<idno type="eISSN">1432-1327</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Circular Dichroism (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutathione (chemistry)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen Bonding (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Static Electricity (MeSH)</term>
<term>Stereoisomerism (MeSH)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dichroïsme circulaire (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutathion (composition chimique)</term>
<term>Humains (MeSH)</term>
<term>Liaison hydrogène (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Stéréoisomérie (MeSH)</term>
<term>Thiols (composition chimique)</term>
<term>Électricité statique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Hydrogen Bonding</term>
<term>Ligands</term>
<term>Static Electricity</term>
<term>Stereoisomerism</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dichroïsme circulaire</term>
<term>Humains</term>
<term>Liaison hydrogène</term>
<term>Ligands</term>
<term>Stéréoisomérie</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29264659</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1327</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</Title>
<ISOAbbreviation>J Biol Inorg Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.</ArticleTitle>
<Pagination>
<MedlinePgn>241-252</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00775-017-1525-5</ELocationID>
<Abstract>
<AbstractText>Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Sambuddha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bonfio</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mansy</LastName>
<ForeName>Sheref S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. cowan@chemistry.ohio-state.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Biol Inorg Chem</MedlineTA>
<NlmUniqueID>9616326</NlmUniqueID>
<ISSNLinking>0949-8257</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516011">GLRX5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="Y">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013237" MajorTopicYN="N">Stereoisomerism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Circular dichroism</Keyword>
<Keyword MajorTopicYN="Y">Cluster transfer</Keyword>
<Keyword MajorTopicYN="Y">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">Glutathione</Keyword>
<Keyword MajorTopicYN="Y">Grx5</Keyword>
<Keyword MajorTopicYN="Y">Iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">Ligand exchange</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29264659</ArticleId>
<ArticleId IdType="doi">10.1007/s00775-017-1525-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00775-017-1525-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2002 Jul 16;41(28):8876-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1995 Apr;2(4):205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Oct 9;135(40):15153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 17;277(20):17476-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Sep 14;21(19):4762-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6753926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1996 Jun 1;237(2):260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jul 23;35(29):9488-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Apr 2;394(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Nov 19;136(46):16240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr F Struct Biol Commun. 2016 Oct 1;72 (Pt 10):732-737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27710937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2016 Dec;590(24):4531-4540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27859051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Feb 12;392(3):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 21;283(47):32839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jun;24(12):1830-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2017 Oct;22(7):1075-1087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28836015</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
</noRegion>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Bonfio, Claudia" sort="Bonfio, Claudia" uniqKey="Bonfio C" first="Claudia" last="Bonfio">Claudia Bonfio</name>
</noRegion>
<name sortKey="Mansy, Sheref S" sort="Mansy, Sheref S" uniqKey="Mansy S" first="Sheref S" last="Mansy">Sheref S. Mansy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000247 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000247 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29264659
   |texte=   Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29264659" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020